B.A.'T.M.A.N Status Report

Axel Neumann, Corinna “Elektra” Aichele, Marek Lindner

June 28, 2007

Abstract

This report documents the current status of the development and implementation of the
B.A.T.M.A.N (better approach to mobile ad-hoc networking) routing protocol. B.A.T.M.A.N
uses a simple and robust algorithm for establishing multi-hop routes in mobile ad-hoc networks.
It ensures highly adaptive and loop-free routing while causing only low processing and traffic cost.

Contents
1 Introduction 1
2 Evolution 2
2.1 Evolution of the Core Algorithm 3
2.1.1 Generation I Lo 3
2.1.2 Generation IT oL Lo 3
2.1.3 Generation IIT and Beyond 3
2.1.4 Re-Broadcast OGMs only from Best-Ranking Neighbor 3
2.1.5 Time-Independent Topology Diffusion 4
2.1.6 Multiple Interfaces Supporto 5
2.1.7 Hiding Local Topology Information Beyond the Neighborhood 5
2.1.8 Protocol Version Check 6
2.2 Maturity and Applicability Evolution 6
2.2.1 Flexible Interface Configuration 6
2.2.2 Gateway and Network Announcement 6
2.2.3 Debugging and Observation 7
2.2.4 Visualization Support Lo 7
2.2.5 Policy Routing Support oL oL 7
3 Real-Life Deployment and Experience 8
4 Performance Evaluation 8
4.1 CPU Load Depending on Number of Neighbors 10
4.2 CPU Load Depending on Number of Nodes 10
4.3 CPU Load Depending on Originator Interval 13

1 Introduction

In this report we present the current status of the development and implementation of the
B.A.T.M.A.N (better approach to mobile ad-hoc networking) routing protocol®.

IB.A.T.M.A.N is available at http://open-mesh.net/batman

The problem with classical routing protocols is that they are typically not well suited for
wireless ad-hoc networks. This is because such networks are unstructured, dynamically change
their topology, and are based on an inherently unreliable medium.

OLSR, the currently most employed protocol for such scenarios, has undergone a number of
changes from its original specification in order to deal with the challenges imposed by city-wide
wireless mesh networks. While some of its components proved to be unsuitable in practice (like
MPR and Hysterese) new mechanisms have been added (like Fish-eye and ETX). However, due to
the constant growth of existing community mesh networks and because of the inherent requirement
of a link-state algorithm to recalculate the whole topology-graph (a particularly challenging task
for the limited capabilities of embedded router HW), the limits of this algorithm have become a
challenge. Recalculating the whole topology graph once in an actual mesh with 450 nodes takes
several seconds on a small embedded CPU.

The approach of the B.A.T.M.A.N algorithm is to divide the knowledge about the best end-
to-end paths between nodes in the mesh to all participating nodes. Each node perceives and
maintains only the information about the best next hop towards all other nodes. Thereby the
need for a global knowledge about local topology changes becomes unnecessary. Additionally, an
event-based but timeless® flooding mechanism prevents the accruement of contradicting topology
information (the usual reason for the existence of routing loops) and limits the amount of topology
messages flooding the mesh (thus avoiding overly overhead of control-traffic). The algorithm is
designed to deal with networks that are based on unreliable links.

The protocol algorithm of B.A.T.M.A.N can be described (simplified) as follows. Each
node transmits broadcast messages (we call them originator messages or OGMs) to inform the
neighboring nodes about it’s existence. These neighbors are re-broadcasting the OGMs according
to specific rules to inform their neighbors about the existence of the original initiator of this
message and so on and so forth. Thus the network is flooded with originator messages. OGMs
are small, the typical raw packet size is 52 byte including IP and UDP overhead. OGMs contain
at least the address of the originator, the address of the node transmitting the packet, a TTL
and a sequence number. OGMs that follow a path where the quality of wireless links is poor or
saturated will suffer from packetloss or delay on their way through the mesh. Therefore OGMs
that travel on good routes will propagate faster and more reliable. In order to tell if a OGM has
been received once or more than once it contains a sequence number, given by the originator of
the OGM. Each node re-broadcasts each received OGM at most once and only those received from
the neighbor which has been identified as the currently best next hop (best ranking neighbor)
towards the original initiator of the OGM. This way the OGMs are flooded selectively through
the mesh and inform the receiving nodes about other node’s existence. A node X will learn about
the existence of a node Y in the distance by receiving it’s OGMs, when OGMs of node Y are
rebroadcasted by it’s single hop neighbors. If node X has more than one neighbor, it can tell by
the number of originator messages it receives quicker and more reliable via one of its single hop
neighbors, which neighbor it has to choose to send data to the distant node. The algorithm then
selects this neighbor as the currently best next hop to the originator of the message and configures
its routing table respectively.

2 Evolution

In contrast to many other protocols, B.A.T.M.A.N has undergone an extensive practical imple-
mentation and testing phase from the beginning of the development. Just like in natural evolution,
many improvements have been developed in order to adapt the core algorithm to (the frequent

2timeless in the sense that B.A.T.M.A.N never schedules nor timeouts topology information for optimising it’s routing
decisions

discoveries of) new and challenging real-life problems. Nevertheless a number of promising per-
formance simulations have been performed now.

In 2005 Corinna ’Elektra’ Aichele and Thomas Lopatic reconsidered the widespread mesh
routing protocol OLSR, with all its complexity and all the modifications (mostly truncations)
that have been applied to the original algorithm in order to make it work to some level in wireless
real-life setups and draw the idea of a new very simple mesh-routing approach. Since then, the
core algorithm as well as its implementation have undergone a number of evolutionary changes.

In the following we have tried do differentiate this evolution in two categories. Section 2.1
gives a summary about the changes in the core flooding and routing algorithm. Section 2.2
describes the evolution of our implementation in terms of capabilities that have been integrated
to make B.A.T.M.A.N more applicable and powerful for the end user as well as for mesh-network
administrators. The latter has prooven to play an important role especially for communities
considering a smooth migration from one technology to another.

2.1 Evolution of the Core Algorithm
2.1.1 Generation I

B.A. T.M.A.N.-I does not check for bidirectional link conditions when forwarding packets. This is
an obvious design flaw. We didn’t bother to add bidirectional link checks in the first experimental
implementation that was meant to merely test the algorithm. The results were however promising.

2.1.2 Generation I1

B.A.T.M.A.N.-IT implements the bare algorithm with bi-directional link checks for meshnodes
with one interface. Therefore the algorithm classifies the characteristic of a link between two
neighboring nodes in unidirectional and bidirectional. A specific link is considered bidirectional
for a certain time-frame if the reply (re-broadcast) of the self initiated (and broadcasted) originator
messages has been received from the corresponding link neighbor. Simply speaking: If I hear you
replying what I've said you must have heard me. To distinguish a re-broadcasted OGM received
via a (so far) unidirectional link from an OGM received via a currently bidirectional link we
introduced the unidirectional flag (UDF), marking OGMs irrelevant for nodes which are not the
original initiator of the OGM.

2.1.3 Generation III and Beyond

B.A.T.M.A.N.-III now represents the current implementation of the algorithm which has defini-
tively undergone the most changes since then. It’s evolution is described in the following subsec-
tions.

2.1.4 Re-Broadcast OGMs only from Best-Ranking Neighbor

Each node re-broadcasts each received OGM at most once and only those received via the neighbor
identified as the currently best-ranking neighbor towards the original initiator of the OGM. Thus,
even if a node has received a yet new OGM, it is not re-broadcasted until this OGM has been also
received via its best-ranking neighbor (and with a TTL greater or equal than the TTL contained
in the last OGM received the first time via the best-ranking neighbor).

We identified that if a node (lets say A) with multiple potential neighbors (one best neighbor
called C and one second best neighbor called B) between itself and a distant node D re-broadcasts
every OGM received via any of its bidirectional neighbors, the neighbors themself may perceive a
wrong picture about the best path via A to D. For example (the actually best) neighbor C might
receive more OGMs via A than A actually received via any particular neighbor from D. This is
particularly dangerous if node C has received more OGMs via another neighbors towards D as
received by A via B, but less than totally accepted from A. In this case node C might select A as
its best neighbor towards D while node A may select node C. A simplified illustration of such a

scenario is given in Figure 1 with lines representing the existing links between nodes. The lines
with an arrow are used to indicate distinct sequence numbers from originator D, re-broadcasted
and received between particular nodes.

Figure 1: Ilustrating of the (not) best-ranking neighbor problem

The described problem could be solved by requesting each node to re-broadcast only those
OGMs received via it’s currently best-ranking neighbor towards the original initiator of the OGMs.
According to this rule and for the scenarios given in Figure 1 node A does only re-broadcast the
OGMs received via node C.

Another benefit of this approach lies in the reduced traffic overhead from the routing protocol
because only selected OGMs are re-broadcasted.

2.1.5 Time-Independent Topology Diffusion

The protocol has been purged from any timers related to the topology detection and diffusion
mechanism. To describe this we will start with for what reasons timers have been used before.
So far the B.A.T.M.A.N algorithm used timers for two reasons.

e Firstly, to identify a link as bidirectional by evaluation whether a re-broadcast of the re-
cently send own OGMs have been received from a neighbor within the last BIDIREC-
TIONAL_LINK_TIMEOUT seconds

e Secondly, to rank a neighbor (selecting the best next hop towards a distant originator)
according to the OGMs received via this neighbor first and within a certain time frame

In both cases, the reliance on timers could be eliminated in favor of (the always increasing)
sequence numbers given with each OGM and corresponding originator.

Regarding the bidirectional neighbor check, whenever a node initiates the existence of a new
OGM by broadcasting it to its potential neighbors, the originator remembers the last send
sequence number and uses a by-one-increased number for the next broadcasted OGM. Here,
the concept of a timeout value has been exchanged with a value defining the range of a se-
quence number frame, terminated at the upper boundary by the sequence number transmit-
ted in the last initiated OGM. Whenever a non-self initiated OGM is received via a neigh-
bor, the receiving node performs the bidirectional link check by validating whether the last
received self-initiated OGM (re-broadcasted) from this neighbor contained a sequence number
which falls within the upper and lower boundaries (lower boundary = upper boundary - BIDI-
RECTIONAL_SEQUENCENUMBER_RANGE) of the current sequence number frame.

Regarding the neighbor ranking the protocol defines another type of sequence-number frame
(the Neighbor Ranking sequence Frame NBRF) which also has a fixed size defined by the RANK-
ING_SEQUENCENUMBER_RANGE. An individual NBRF must be maintained for each known
OG in the mesh.

The upper boundary of the NBRF (maintained for a particular other OG) is always defined
by the largest sequence number received from this OG. Previous received OGMs with a sequence

number lower than the lower boundary of the NBRF are not of interest any more and can be
dropped. Whenever a new OGM from another node is received for the first time via a bidirectional
link and containing a sequence number greater than the upper boundary of the corresponding
NBRF the following tasks are performed.

e The frame boundaries are updated (as mentioned above).

e The sequence number is stored together with the neighbor via which it has been received
and the IP address of the initial OG.

e The best-ranking neighbor is re-evaluated by selecting the neighbor with the most stored
sequence numbers within the current NBRF.

The typical question people have raised when being presented with this approach is: “What
happens with an OG (and related data and routing entries) if it just dies?” The answer is
simple. Nothing happens until some kind of garbage collector comes along after quite a while
(if more than an integral of the time calculated from the originator interval multiplied with the
RANKING_SEQUENCENUMBER_-RANGE has passed since the last OGM from this OG has
been received) and completely purges this originator together with its routing-table entry and all
it’s data. It should be noted, that if the garbage collector purges an OG, none of the existing
routes is optimized, its just removed and no processing time or traffic is wasted during this time
for the defunct route to this OG.

2.1.6 Multiple Interfaces Support

The protocol supports multiple interfaces per node. Since the same message type is used for link
sensing, neighbor discovery, bidirectional-link validation, and flooding a mechanism was needed
to allow the initiator of an OGM to distinguish the received re-broadcast from his neighbors into
two categories. Those, re-broadcasted by an neighbor on the same interface as being received and
those re-broadcasted on another interface as being received. Where the rebroadcast of an OGM
via all interfaces of a node is important for the flooding, the described distinction is important for
the bidirectional-link check (one particular link can only be bidirectional between two particular
interfaces). To achieve this separation the “is direct link flag” (IDF) has been introduced. This flag
must be populated only by direct neighbors, only when re-broadcasting an OGM which has been
received directly from the interface represented by this OGM, and only for those re-broadcasts
transmitted on the interface via which it has been received.

2.1.7 Hiding Local Topology Information Beyond the Neighborhood

Nodes may alter (i.e. reduce) the default TTL of their own OGMs to limit the number of hops
that these OGMs are propagated through the mesh. This can be done for all OGM or just for
OGMs propagating the existence of particular interfaces. This does not affect the routing between
other nodes in the mesh, but may be used to limit the range of presence (existence) of individual
nodes. For example a node with three interfaces (three originators) may be configured to send
OGMs with a high TTL only for the first interface and a TTL of two for OGMs representing the
second and third interface. This way, the node is still reachable via the IP of it’s first interface
but does not burden the nodes beyond its two-hop horizon with the efforts of maintaining and
re-broadcasting OGMs from it’s second and third interface.

Especially for (back-bone) nodes, which are not supposed to generate pay-load traffic itself
and which were only installed to improve the connectivity and coverage of the mesh by relaying
other nodes traffic, the possibility of using a small TTL for all their OGMs comes with the
following advantages. Firstly, the topology and even the existence of the back-bone nodes could
be completely hidden beyond their local neighbor horizon and secondly, the number of back-bone
nodes (and resulting coverage) can be increased to any size with virtually no side affects to the
overall traffic and processing cost.

2.1.8 Protocol Version Check

In order to prevent B.A.T.M.A.N instances with significant differences between their protocol
(implementation) from falsely interpreting each others OGMs a protocol-version field is conveyed
with each OGM. Whenever a B.A.T.M.A.N instance receives an OGM containing a protocol-
version number that does not match the hardcoded number of it’s own program version, the
packet is silently dropped.

2.2 Maturity and Applicability Evolution
2.2.1 Flexible Interface Configuration

Alias interfaces B.A.T.M.A.N can be started on alias interfaces. Using alias interfaces allows
the assignment of different IP addresses, netmasks, and broadcast addresses to the same physical
network-interface device. By assigning different netmasks (like in Berlin 104.0.0.0/8 for OLSR and
105.0.0.0/8 for B.A.T.M.A.N) to the same interface, two different routing protocols can be used
in parallel on the same hardware without influencing each other. This is particulary important
to allow a smooth migration from an existing routing-protocol (like OLSR) to a new one (like
B.A.T.M.A.N). For example, it enables node administrators to test the B.A.T.M.A.N protocol
while running OLSR in parallel until the former proved to be better.

Support for equal netmasks on different interfaces B.A.T.M.A.N allows the assign-
ment of equal netmasks for different interfaces. This is necessary to allow different interfaces to
participate in the same mesh, thus releasing the administrator from the task of managing routing
between different netmask (fractions) in the topology.

2.2.2 Gateway and Network Announcement

Besides the main task of making routing decisions B.A.T.M.A.N helps offering different services
such as network announcement or internet connectivity which make a mesh network worthwhile.

Network announcement In certain situations it may be desired to offer dedicated infrastruc-
ture like webservers, mailservers, or similar services to the mesh network. Often this infrastructure
operates outside the mesh but should be reachable to make these services available to the nodes
in the mesh. In such a case a near B.A. T.M.A.N node may send out network announcements
carrying the information that a particular address range (the IP addresses of the announced in-
frastructure) can be reached by forwarding the data to the same neighbor as selected for the node
announcing it. Another purpose of announcing whole networks instead of individual host routes
is to reduce the size of the routing tables.

Internet connectivity In order to provide a reliable internet connection B.A.T.M.A.N offers
a set of features.

Gateway classes The B.A.T.M.A.N node which offers internet connection floods the network
with information of the available internet bandwidth by setting a corresponding gateway class.

Routing classes The B.A.T.M.A.N node which wants Internet connection chooses its internet
gateway based on certain criteria. The user can control these criteria by setting a routing class.
B.A.T.M.A.N knows three different routing classes:

1. Use fast internet connection - B.A.T.M.A.N tries to find the best available connection by
watching the uplinks throughput and the link quality.

2. Use stable connection: B.A.T.M.A.N observes the internet nodes and tries to find out which
one is the most reliable. This mode is not implemented yet but will follow in batman 0.3.

3. Use best statistic internet: B.A. T.M.A.N only compares the link quality of the internet node
and chooses the one with the best connection.

Preferred gateway In some cases it may be desired to override the auto selection mechanism
by setting the preferred gateway.

UDP tunnel for GW traffic To encounter gateway switching B.A.T.M.A.N automatically
negotiates UDP tunnels between the client and the internet gateway. The gateway distributes
tunnel IPs among the clients.

2.2.3 Debugging and Observation

Demonizing batmand Like most routing implementations the routing application can be
used as a daemon, operating in the background.

The daemon will log all critical information to the syslog (/var/log/syslog on most Linux
systems).

Multiple debug-instances of the main daemon To observe the status of a batman-
daemon operating in the background, multiple additional client instances can be started in
monitor-mode to print out status information of the main daemon instance (which performs
the actual routing). The batmand-client processes can specify different debug levels in order to
provide various levels of verbosity to the user. The following debuglevels are currently available.

e Debug level 1 lists all known originators together with the best-ranking and further potential
neighbors towards the final destination.

e Debug level 2 lists all available as well as the currently selected originator used as GW for
tunneling packets to and from the internet.

e Debug level 3 instantly shows all changes to the routing table.

e Debug level 4 provides in-depth event logging and consequential decisions made by the
protocol. This level is very very verbose.

e Debug level 5 provides (if enabled with corresponding defined during compilation) additional
profiling and memory-allocation observations.

2.2.4 Visualization Support

Since no topology database is computed by the protocol an additional solution to create topol-
ogy graphs has been implemented, the Vis-Server. Batman-daemons may send their local view
about their single-hop neighbors to the Vis-server. The Vis-Server collects the information and
provides data in a format similar to OLSR’s topology information output. Therefore existing so-
lutions to draw topology graphs developed for OLSR can be used to visualize mesh-clouds using
B.A.T.M.A.N.

2.2.5 Policy Routing Support

As describe above, B.A.T.M.A.N. can run in parallel to other routing protocols without influencing
each other. However, there is one issue where forwarding rules in the routing-table from different
protocols may collide.

This happens when two protocols are configured to assign different rules for the same desti-
nation network mask, e.g. when configuring the default route. Then, normally one entry has a
higher priority than the other (in case of OLSR and B.A.T.M.A.N the latter has a higher prior-
ity) with the consequence that every forwarded packet with a destination address destined to the
internet will end up in the tunnel to the currently selected B.A.T.M.A.N GW.

As of version 0.3 alpha, B.A.T.M.A.N supports policy routing which allows for example the
selection of routing rules depending on the source address of the to-be-forwarded packet. Therefore
the new policy-routing implementation now uses its own dedicated routing tables. The default
table (used by OLSR) and its default route is not shared with B.A.T.M.A.N any longer. Instead,
the following tables are used (accessible by executing the linux command: ip route ls table 66)

e Table 65 for announced networks
e Table 66 for batman host routes
e Table 67 for the default route

Additionally, B.A.T.M.A.N (from the 0.3-and-beyond branch) defines rules to specify which
routing table shall be used according to the source and destination address of each to-be-forwarded
packet (these rules are available with the linux command: ip rule). In case of the Berlin Freifunk
setup (with 104/8 and 105/8 netmasks for OLSR and B.A.T.M.A.N) these rules may be configured
to always use the default route configured by OLSR for internet traffic except for packets with a
source address matching the 105/8 netmask for which it would choose the default route configured
in table 67. Since the implementation can not yet anticipate the exact intentions of the mesh-
network administrators, these rules may be adapted to individual demands.

3 Real-Life Deployment and Experience

At the release party of B.A.T.M.A.N.-0.2 at the C-Base in Berlin, various people reported about
their experience with B.A. T.M.A.N. Among the guests have been mesh-network administrators
from Berlin, Goerlitz, Halle, and Magdeburg. Further experimental B.A.T.M.A.N. setups and
related experience are documented in the internet by groups from Leipzig, Berlin Nord-Ost, and
Weimar. An up-to-date collection of known B.A.T.M.A.N Mesh networks with lins to related
websites can be found at http://open-mesh.net/batman/experience .

The typical size of these mesh networks consists of about 30 nodes running OLSR and
B.A.T.M.A.N in parallel. As of today it is difficult to find conclude with a consensus between
existing reports. One reason is definitely the fact, that recent releases have undergone many and
major changes and the experience gained from the attendees goes back to very recent as well as
already outdated and buggy revisions of our implementation. We hope that our stable release
will motivate the groups to update their testbeds.

However, even groups that summarized their observations based on experiments made with
the latest release candidate presented a quite different picture of B.A.T.M.A.N.s performance -
ranging from the conclusion that the protocol causes more CPU load than OLSR and connects
individual nodes much worse to the central GW as OLSR, to the persuasion that B.A.T.M.A.N.
performs so outstandingly well that OLSR will not be enabled any more in particular mesh clouds.

The observations about higher CPU-load are also caused by the fact, that most OLSR se-
tups used by the communities are configured with extremely slow Hello- and Topology-Update-
Intervals. This is not comparable to the short Originator-Interval of one second that is the default
setting in B.A.T.M.A.N. Our observation in the Berlin mesh with approximately 70 originators
showed that the quality of routes computed by B.A.T.M.A.N. is comparable to OLSR as long as
the latter does not loop. We didn’t experience any routing loops with B.A.T.M.A.N., neither in
real life setups nor in simulations. The increase of CPU-load caused by B.A.T.M.A.N. grows only
linear with the number of nodes.

A snapshot from the B.A.T.M.A.N topology of the Berlin Freifunk Mesh is shown in Figure 2

4 Performance Evaluation

We have started to evaluate the performance as well as the traffic and processing overhead of our
B.A.T.M.A.N implementation in a virtualized network environment (thanks to the OLSR-NG?

3The OLSR-NG project can be found at https://wiki.funkfeuer.at/index.php/Olsrd-ng

Figure 2: S3D Screenshot from 22.6.2007 of Berlin’s B.A.T.M.A.N. Cloud

project for providing knowledge and resources for this task). Allthough, more effort is required
to make profound statements about the B.A.T.M.A.N. algorithm in large scale networks, some
preliminary results have been obtained.

The major problem regarding the applicability of the given results lies in the zero packet loss
of the current emulation testbed. Because the biggest part (about 80 %) of the consumed CPU
load (caused by the B.A.T.M.A.N implementation) can be assigned to the number of received and
subsequently re-broadcasted packets, we expect a much lower CPU load in real-life setups.

In order to have some values for comparing the results each measurement scenario has been
performed for B.A.T.M.A.N and the OLSR protocol. Thereby the following general setup and
parametrization has been applied.

e The setup for the following emulation consisted of an “Intel(R) Core(TM)2 CPU T7200 @
2.00GHz” with a 32-bit gentoo Linux OS and using openVZ for virtualization of individual
nodes.

e The network configuration consisted of a fixed topology with (except due to CPU overload)
no packet loss. This has been achieved by connecting virtualized linux instances (running
B.A.T.M.A.N of OLSR) to a layer 2 bridge and using ebtables for allowing only particular
packets (from the virtual neighbors) to pass by)

e One single interface per virtualized node

e OLSR 0.5.0 has been used as the olsrd binary with the following configuration values.

— Hysteresis no

— LinkQualityLevel 2, LinkQuality WinSize 100
— Pollrate 0.05

— NicChgsPolllnt 3.0

— RcRedundancy 2

— MprCoverage 5

— Hellolnterval 5.0, HelloValidity Time 200

— Tclnterval 0.5, TcValidityTime 250.0

— MidInterval 5.0, MidValidity Time 100.0

e B.A'T.M.A.N 0.2 has been used as the batmand binary with an originator interval of 5000,
a neighbor ranking sequence-number frame (NBRF) range of 10, and a TTL of 62.

4.1 CPU Load Depending on Number of Neighbors

Figure 3 shows the dependency between the average number of neighbors and resulting CPU load
for B.A.T.M.A.N and OLSR. The last (6.5) value for OLSR has been omitted because the host
machine was already overloaded. The measurement has been achieved with a constant value of
60 nodes. For the two-neighbor case the virtual network nodes have been configured in a line,
having (except for the exteriors) one neighbor on the right and another on the left side each. The
2.9-neighbor case was given by a 30x2 grid configuration. The measurements for 3.4 and above
are based on a 10x6 grid configuration with additional diagonal connections between nodes.

For the given scenarios, the measurement indicates that B.A. T.M.A.N scales lineary with the
average number of neighbors and with an average gradient of 0.2.

4.2 CPU Load Depending on Number of Nodes

Figure 4 illustrates the average CPU load depending on the number of nodes in the mesh. There-
fore, the virtual network has been configured as a simple grid with 10 columns (10 nodes per line)
and filled up with as much lines (multiples of further 10 nodes) as needed for the corresponding
number-of-nodes value on the x-axis. For the graph, the different number of average neighbors
per node and measurement has not been respected and should be considered.

10

[average CPU-load per nodel

CPU consumption depending on numker of HEs

T T T T T T T T
avg. CPU load per BATHMAN node [percent] ——

avg. CPU load per OLSED node [percent] ——

2 2.3 2 2.3 4 4.3 =] 5.3 &

[average number of MHEs per nodel

Figure 3: CPU consumption depending on number of neighbors

11

[average CPU-load per nodel

CPU consumption depending on number of nodes

T T T T T T T
avg. CPU load per BATHMAN node [percent]l ——

avg. CPU load per OLSED node [percent] ——

el

23 48 43 1] 33 1] &3
[Lhumber of nodes]

Figure 4: CPU consumption depending on number of nodes

12

sa

4.3 CPU Load Depending on Originator Interval

Figure 5 shows the dependency between the originator interval and the resulting average CPU
load per node in red and the reciprocal of the resulting average CPU load in green.

Thereby the measurement indicates that for the given scenario and measurement samples the
originator interval has a reciprocal influence on the average CPU load per node.

CFU consumption depending on originator interwal

=] T T T T T T T T T
avg. CPU load per BATHMAN node [percent]l ———
reciprocal awg. CFU load per BATHMAN node [percentl ——
4_
o
]
o
c
&
: ir
-
m
(=)
1
o
o
0
L=
o]
m
L
L1
>
m
1_
a 1 1 1 1 1 1 1 1
5] 1686 Zana 36846 4868 Saaa =Y s]s]s] Fana 2868 Q888 18688

[originator interwall

Figure 5: CPU consumption depending on originator interval

13

